
MATH 347: FUNDAMENTAL MATHEMATICS, FALL 2015

PRACTICE PROBLEMS FOR MITERM 3

1. Write the number 1043(5) in 4-ary representation.

Solution. Although one can do this directly, we will first convert the 5-ary into our good
ol’ decimal representation and worry about converting that into 4-ary.

1043(5) = 1 ⋅ 53 + 0 ⋅ 52 + 4 ⋅ 51 + 3 ⋅ 50 = 125 + 0 + 20 + 3 = 148. Now we find its 4-ary
representation.

What’s the largest power of 4 that fits into 148? It’s 64 = 43.
How many times does 64 = 43 fit in 148? 2 times and the remainder is 148− 2 ⋅ 64 = 20.
How many times does 42 = 16 fit in 20? 1 time and the remainder is 20 − 1 ⋅ 16 = 4.
How many times does 41 = 4 fit in 4? 1 time and the remainder is 4 − 1 ⋅ 4 = 0.
How many times does 40 = 1 fit in 0? 0 times (funny how in English one says “one

time” and “zero times”).
Thus, the 4-ary representation of 148 is 2110(4). Hence, we showed that 1043(5) =

2110(4). �

2. Let D be a set and let f, g ∶D → R be bounded functions such that ∀x ∈D, f(x) ≤ g(x).
For each of the following statements, either prove it or give a counter-example.

(a) supf(D) ≤ inf g(D).
Solution. This is false and here is a counter-example. Let D ∶= {1,3}, f = idD,
i.e. f(1) = 1 and f(3) = 3, and let g = f + 1, i.e. g(1) = 2 and g(3) = 4. We
certainly have that for every x ∈ D, f(x) ≤ g(x), but supf(D) = sup{1,3} = 3, while
inf g(D) = inf {2,4} = 2. �

(b) supf(D) ≤ sup g(D).
Solution. This is true. Put u ∶= sup g(D). Recall that the supremum of a set is its
least upper bound; in particular, it is less than or equal to any upper bound. Thus,
to show supf(D) ≤ u, we only have to show that u is an upper bound for the set
f(D). By the definition of an upper bound (hope the reader has reviewed it by now),
we have to show that for all y ∈ f(D) y ≤ u. To this end, fix an arbitrary y ∈ f(D).
Being in f(D) means that there is x ∈D such that y = f(x). But for this x, we have
f(x) ≤ g(x). Moreover, g(x) ∈ g(D), so g(x) ≤ sup g(D) = u. Thus,

y = f(x) ≤ g(x) ≤ u,

�

and this is what we had to show.

(c) inf f(D) ≤ inf g(D).
Solution. Analogous to the previous part (with inequalities reversed). �

3. Prove that for any sets A,B ⊆ R that are bounded above, sup(A∪B) = max{supA, supB} .
Solution. Put u ∶= max{supA, supB} and realize that all we have to show is that u is the
supremum of the set A ∪B. By definition, we have to show two things:

(i) u is an upper bound for A ∪B.
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Proof. We have to show that ∀x ∈ A∪B x ≤ u. Fix arbitrary x ∈ A∪B. Then x ∈ A
or x ∈ B. If x ∈ A, then x ≤ supA ≤ u. If x ∈ B, then x ≤ supB ≤ u. Thus, either
way, x ≤ u. �

(ii) Any number v < u is not an upper bound for A ∪B.

Proof. Fix v < u. Because u is the maximum of supA and supB, it is equal to one
or the other, and we consider those cases separately. Suppose u = supA, i.e. u is
the least upper bound of A, and since v < u, v is not an upper bound for A, which
means that there is x ∈ A with x > v. In particular, this x is in A ∪B, so v is not
an upper bound for A ∪ B. The case of u = supB is handled similarly (these are
symmetric cases). �

�

Before continuing further, let’s review the definition of limit.

Definition 1. Let P (n) be a mathematical statement for every n ∈ N. We say that even-
tually P (n) holds if there is (an event) N ∈ N such that for every (moment) n ≥ N , P (n)
holds.

Definition 2. We say that L ∈ R is a limit of a sequence (xn)n, and write limn→∞ xn = L or
xn → L, if for every (measure of closeness) ε > 0, eventually ∣xn − L∣ < ε (i.e. xn is within
less than ε distance of L).

Rewriting the last definition without using the term eventually, we get the following
(somewhat dry and hard to comprehend) reformulation:

Definition 2′. We say that L ∈ R is a limit of a sequence (xn)n if

∀ε > 0 ∃N ∈ N ∀n ≥ N ∣xn −L∣ < ε.

It is also worth noting that the condition ∣xn−L∣ < ε can be written in various (equivalent)
ways, such as:

(i) −ε < xn −L < ε
(ii) −ε < L − xn < ε

(iii) L − ε < xn < L + ε
(iv) xn ∈ (L − ε,L + ε)
(v) xn ∈ B(L, ε), where B(L, ε) denotes the ”open ball around L of radius ε”, which simply

means B(L, ε) ∶= (L − ε,L + ε).

5. Let P (n) be a mathematical statement for every n ∈ N. Write down explicitly the negation
of the statement “eventually P (n) holds”.

Solution. ∀N ∈ N∃n ≥ N¬P (n); in words: for every “threshold” N ∈ N, there is a “bad”
index n after that “threshold”, at which the property P fails. �

6. Let n0 ∈ N. For a sequence (xn)n, let (xn)n≥n0 denote the sequence obtained from (xn)n
by deleting the first n0 − 1 terms, i.e. (xn0 , xn0+1, xn0+2, ...). Prove that (xn)n converges
to L if and only if (xn)n≥n0 converges to L. In other words, the first finitely many terms
don’t affect the convergence of the sequence.
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Solution. This statement is immediately implied by the definition of eventually and
there is nothing more to write. (I won’t demand more on the midterm, don’t worry.) �

7. Suppose that xn → L and L > 7. Prove that eventually xn > 7.

Solution. Intuitively, xn → L means that no matter how close we want (arbitrary positive
distance ε), the members of the sequence (xn)n eventually get that much close to L.
Now how far is L from 7? Their distance is L − 7. Thus, we choose our distance ε ∶= L−7

2 ,
so we get that eventually

L − ε < xn < L + ε.

The relevant inequality for us here is the first one because L − ε = 7 + ε, so 7 < 7 + ε =
L − ε < xn.

P.S. Drawing a picture always helps. �

8. For each of the following statements, determine whether they are true or false, and prove
your answers.

(a) If a sequence is bounded, it has a limit.

Solution. NOPE, take (xn)n = (0,1,0,1, ...). �

(b) The sequence (0,1,0,1, ...) diverges.

Solution. YEP, and to prove it we simply show that no real number L is a limit of
this sequence. Fix an arbitrary L ∈ R. The tricky part here is the realization that we
have to consider the following cases separately:

Case 1 : L = 0. Intuitively, 0 can’t be a limit of our sequence because of the 1s. We
prove this formally. To show that 0 is not a limit of (xn)n, we need to find a “bad”
ε > 0 such that for all N ∈ N there is n ≥ N with ∣xn∣ ≥ ε. In our case, ε ∶= 1 works.
Indeed, no matter what N is, taking any even index n ≥ N gives xn = 1 so ∣xn∣ ≥ ε.

Case 2 : L ≠ 0. Intuitively, a nonzero L can’t be a limit of our sequence because of
the 0s. We prove this formally. To show that L is not a limit of (xn)n, we need to
find a “bad” ε > 0 such that for all N ∈ N there is n ≥ N with ∣xn −L∣ ≥ ε. In our case,
we take ε to be the distance between 0 and L, i.e. ε ∶= ∣L− 0∣ = ∣L∣. Indeed, no matter
what N is, taking any odd index n ≥ N gives xn = 0 so ∣xn −L∣ = ∣0−L∣ = ∣L∣ ≥ ε. �

(c) lim
n→∞

(−1)nn
n + 1

= −1.

Solution. NOPE, and showing it is very similar to Case 1 of the previous part. Intu-
itively, −1 can’t be a limit of our sequence because its members at even indices are
positive, and hence away from −1 by at least distance 1.
Now formally. To show that −1 is not a limit of (xn)n, we need to find a “bad”
ε > 0 such that for all N ∈ N there is n ≥ N with ∣xn − (−1)∣ ≥ ε. In our case, ε ∶= 1
works. Indeed, no matter what N is, taking any even index n ≥ N gives xn > 0 so, in
particular, ∣xn − (−1)∣ = ∣xn + 1∣ ≥ 1 = ε. �

(d) If a sequence is monotone, it has a limit.
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Solution. NOPE, take xn = n, then (xn)n is unbounded and hence diverges.
This question is design to emphasize the hypothesis of boundedness in the Monotone
Convergence Theorem. �

(e) If (xn ⋅ yn)n converges, then at least one of (xn)n and (yn)n converges.

Solution. NOPE, take (xn) = (0,1,0,1, ...) and (yn) = (1,0,1,0, ...), then for all n ∈ N
xnyn = 0, so xnyn → 0, whereas neither of (xn)n and (yn)n converges. �

(f) If a bounded sequence (xn)n is increasing, then it converges to sup{xn ∶ n ∈ N}.
Solution. YEP, this is just the statement of the Monotone Convergence Theorem. �

9. Do Problems 1, 2(b) and 3 of HW10. If you have time, also do 2(a) and 4.

Solution. Sorry, this is part of the homework. However, here is a hint for 2(b): use
2(a). �
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